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The inviscid compressible flow stability problem is mathematically similar to  
that of sound propagation in a sheared flow field. This similarity has been ex- 
ploited by applying an inner expansion technique t o  study the effect of finite 
shear gradients on free parallel flow instabilities. This technique had previously 
been used to investigate the effect of thin boundary layers on sound propagation 
in ducts. The expansion, which is applicable to flow profiles involving thin, but 
finite, shear layers separating regions of uniform flow, offers a significant com- 
putational advantage over the numerical methods commonly employed to  
determine the stability of continuous mean flow profiles. Although equally 
applicable t o  three-dimensional and to spatially growing hydrodynamic in- 
stabilities, the procedure is demonstrated by application to the eigenvalue prob- 
lem for temporal instabilities of shear layers and jets in plane inviscid compres- 
sible flow. 

For the case of vanishingly thin shear layers, the eigenvalue equations derived 
here reduce to those obtained by Miles (1958) for parallel flows bounded by vortex 
sheets. The series solution of Graham & Graham (1969), valid for linear shear- 
layer profiles of arbitrary thickness, provides a basis of comparison for the ex- 
pansion-method results. Unstable-mode eigenvalues obtained using the two 
methods are found to be in good agreement for a significant range of values of the 
ratio of shear-layer thickness to axial wavelength. 

1. Introduction 
Both temporal and spatial instabilities of jets and free layers in inviscid com- 

pressible flow have been studied with regard to their physical relationship to  
certain acoustic phenomena. These include turbulence-generated aerodynamic 
noise (Berman & Ffowcs Williams 1970; Crow & Champagne 1971; Michalke 
1971) and the flow dependence of the acoustic impedance of orifices in duct walls 
(Ronneberger 1972). However, quite apart from physical considerations, there 
is a close connexion between the mathematical formulation of the two problems, 
a point demonstrated by the work of Miles (1957), Friedland &Pierce (1969) and 
Howe (1970). As noted by Doak (1972), the equation which governs the propa- 
gation of sound in lined ducts containing sheared mean flow also governs the 
hydrodynamic stability of the mean flow. I n  fact, several investigators have 
obtained extraneous solutions to the acoustic eigenvalue problem which are 
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physically inexplicable from an acoustic viewpoint, but which can apparently 
be viewed as modes of hydrodynamic instability. 

This mathematical similarity may be used to advantage by interchanging 
analytical and computational techniques between the two areas of study. 
The present work is a case in point, and involves application of an inner asymp- 
totic expansion method to the instability problem. The method was used by 
Eversman & Beckemeyer (1972) in their investigation of boundary-layer effects 
on sound propagation in lined flow ducts. 

The expansion technique is based on the assumption that a thin shear gradient 
separates areas of uniform flow. This allows use of the shear-layer thickness 
as a small parameter with which an inner asymptotic expansion in the shear 
gradient region may be performed. An approximate solution describing the 
behaviour of the disturbance pressure within the shear layer is thereby obtained, 
and subsequently matched to the uniform flow solutions by requiring that the 
boundary data coincide on the junctions between regions. 

Significant computational advantages over the commonly employed numerical 
integration methods were obtained when this expansion procedure was applied 
to the acoustic problem, and these carry over to the present application. The 
method has provided a useful tool for the quantitative study of finite shear- 
gradient effects on jet and shear-layer instabilities. 

2. Basic equations 
Miles (1958) and Lessen, Fox & Zien (1965) have considered the temporal in- 

stability of discontinuous shear layers and jets in plane inviscid compressible 
flow, with the boundaries between uniform flow regions represented by vortex 
sheets. Blumen (1970,197 l),  on the other hand, investigated the stability charac- 
teristics of smoothly varying mean flow profiles, specifically, with hyperbolic- 
tangent and hyperbolic-secant representations for the shear layer and jet, 
respectively. It is proposed that a profile intermediate to  these be formed by 
replacing the vortex-sheet boundary between uniform flow regions by a shear 
layer of finite extent, as in figure 1. For convenience, we assume the flow profile 
to be continuous and the medium to be characterized by a constant sound speed 
a,. The instability problem may be posed as a three-region coupled boundary- 
value problem, with propagation of the disturbance governed by an appropriate 
wave equation in each region (see figure 2). In region I we have 

V2F = ( utt + (2W"O) Fxt + JGFxx, 
while in region I1 

V2F = (1/"Ol2 Ptt + (2M/ao) uxt + M211,, - 2 P , a o ~ , ~ x  ( 2 )  

and in region I11 V2F = (l/ao)2Ftt, (3) 

where po is the steady-state fluid density and 13 is the disturbance pressure. The 
velocity components are 

u* = U(y) +a, v* = 6, (4) 
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FIGURE 1. Jet  profiles : (a) hyperbolic secant; ( b )  discontinuous 
vortex sheet; (c) finite shear layer. 
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FIGURE 2. Flow regions: (a) shear layer; ( b )  jet. 

where U and V are the disturbance velocities and U is the mean flow velocity. Note 

( 5 )  

(6) 

( 7 )  

that 

in region I, 
in region I1 and 
in region 111. 

Since the mean r l ~ ~  profile is continuous, continuity of L e  disturbance field 
may be assured by requiring continuity of pressure and pressure gradient 
@lay at the boundaries between regions. The boundary conditions may be 
completed by (i) requiring the disturbance to die out far from the shear layer or 
jet, and by (ii) invoking symmetry considerations at  the jet centre-line. 

We shall consider disturbances having wavenumber a, wave propagation 
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velocity Pn/ao and temporal growth rate pI/a0, that is, the disturbance quantities 
vary as 

(8) s = g(y) exp [i(a. - P41, 
where E is real, P = PR+iPI (9) 

is complex and S stands for p ,  U or V. We note in passing that the problem formula- 
tion is not significantly changed for the study of spatial instabilities, in which 
case /3 becomes real, and a the complex eigenvalue. However, we restrict the pre- 
sent work to the study of temporal instabilities. The y momentum equation 

-Po(?& + UV,) = pu 

v, = iav = ap,/[poao(p/ao - ME)]. 

(10) 

(11)  

may be used t o  relate the disturbance vertical velocity component and pressure 
in region 11. 

Equations (1)-(3) may now be written as ordinary differential equations. I n  
region I we have 

in region 11 
d2p/dy2 + [(EM,-P/ao)2-a2]p = 0, 

I 

+[(aM-/3/a0)2-a2]p = 0 a?!? - _.- 

2a d M d p  
dy2 olM-/?/a0 dy dy 

m d  in region I11 d2p/dy2+ [(/3/ao)2-a21p = 0. (14) 

Solutions in regions I and I11 may be written down immediately. For the shear- 
layer problem, with the regions defined such that (figure 2 )  

m > y > A  

in region I, A > , y > , O  
in region I1 and 0 3 y >  -m 
in region 111, the solutions are 

p = A exp {i[(aMo -P/uo)2 - a2]+y} 

in region I and P = B exp {i[(P/ao)2 - a214 

in region 111, where the signs of the square-root terms are chosen so that the 
imaginary part is positive in region I and negative in region 111, thus ensuring 
that the disturbance dies out far from the shear layer. 

Similarly, for the jet, where 

defines the extent of region I, 
O > y >  -h  (20) 

- h > y >  - ( h + A )  (21) 

for region I1 and - ( h + A )  3 y > --CO ( 2 2 )  

for region 111, the disturbance pressure is 

p = A ;g { [ (aMo - p/uo)2 - a”+y} 

in region I, with the cosine chosen for disturbances symmetric in pressure (anti- 
symmetric in v) about the jet centre-line and the sine for disturbances anti- 
symmetric in pressure (symmetric in v). The solution in region I11 is 

p = Be~p(i[( /? /a , )~-a~]f  (y+h+A)},  (24) 
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with the imaginary part of the square root negative. We are left only with the 
tasks of determining the solutions in region I1 and then satisfying the continuity 
conditions for the disturbance field. Both numerical and closed-form solutions 
to (13) have been obtained previously. Graham & Graham (1969) determined a 
series solution for the special case of a linear shear-layer profile. Numerical 
solutions have been obtained, for example, by numerical integration (Mungar & 
Plumblee 1969) and by weighted residual techniques (Unruh 1972). We choose 
to assume the shear-layer region to be of small but finite thickness, and t o  use 
this assumption to obtain an approximate closed-form solution. 

3. The inner expansion 
Make the change of variables 

< = Y  

for the shear layer and 6 =  y + h + A  (26) 

for the jet and, furthermore, specify values for the pressure and its gradient a t  
< = 0. Then the disturbance pressure in region I1 is governed by the following 
equations: 

2a dMdp 
+[(aM-p/a0)2-a2]p = 0) d2P e- aM - Pfao 

p = no, dp/d[ = n1 at [ = 0. ( 2 8 )  

We assume the shear-layer thickness A to be very small and construct an ex- 
pansion of the sheared region by introducing the inner variable 

7 = CIA. (29) 

Note that we have transformed the boundary-value problem for region I1 into 
an initial-value problem and have focused our attention on the area near y = 0. 

The governing equations may now be written as 

p =no, dpldy = Anl a t  7 = 0. (31) 

We proceed by assuming the solution of (30) and (31) to be in the form of a power 
series in A 

P(7) = Po(T) + APl(7) +A2P2(Y) + * * *  (32) 

By substituting (32) into (30) and (31)) and equating like powers of A, we obtain 
a succession of initial-value problems. Specifically, for the zeroth-order term we 
obtain 

po = no, dpo/dy = 0 a t  y = 0, (34) 
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for the first-order term 

and for the remaining terms 

(38) pi = 0, dpi/dy = 0 at y = 0 (j = 2 , 3  ,... ). 
Recognizing the expression 

l / ( a J f  - P/a0I2 (39) 

as an integrating factor for each of (33), (35) and (37), we see that the solutions 
up to the second-order term are 

Po = 770) (40) 

Upon neglecting terms of order A2, we may express the disturbance pressure 
and its derivative in region I1 as 

Although this solution is strictly valid only for small y, we now assume it to 
hold as well in the outer region near the opposite edge of the shear layer 7 = 1. 
Then the pressure and its Neumann derivatives a t  the boundaries of region I1 
may be represented by 

and p(7 = 0 )  = no, * ( T  = 0) = 77,. (4'7) dY 
The limits of applicability for this approximate solution must be determined 

numerically. Note that the solution depends on the form of the mean flow 
profile within the shear layer in a relatively straightforward fashion. The inte- 
grals involved can be solved in closed form for several profiles, including sinu- 
soidal, Iinear and the l/N power law profiles. 

To investigate the accuracy of the solution, attention was given to the linear 
profile. For this case, 

M = M  07 (48) 
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and the integrals in (45) and (46) are 

and 

A basis of comparison for the expansion-method solution is offered by the exact 
series solution to (13) for the linear profile. This solution, which is not restricted 
to small A, was obtained by Graham & Graham (1969) in their investigation of 
plane wave propagation through a shear layer of linear profile. It may be written, 
in our notation, as 

(51) 

where co and c1 are arbitrary constants, and 

P = co f+ Cl9, 

m - 
g = C b j [ l  -No a7/(,8/ao)]i-l (j even). (53) 

j = 2  

The coefficients bj are given by the recursive relationships 

bl = b4 = 1, b2 = 0,  b, = -+(A/3/aO Mo)2, (54) 

The disturbance pressures in region I1 defined by (43)-(47) and by (51)-(55), 
respectively, have been matched to the solutions in regions I and I11 to yield 
closed-form eigenvalue equations for the temporal instability problem. Before 
discussing the numerical techniques used to solve the transcendental charac- 
teristic equations, let us make some observations pertaining to  the eigenvalue 
equations for the thin-shear-layer approximation. 

By requiring field continuity a t  the junctions between regions, we obtain 
a set of four homogeneous algebraic equations in the four unknowns, A ,  B, no 
and nl. We seek a non-trivial solution to these equations and, thus, require the 
determinant of the coefficients of the unknowns to vanish. Expansion of the 
determinant yields the following characteristic equations : 

= - A ~ ( G ~ - a 2 ) 4  G2da-i(Go/3/ao)2 

for the shear layer and 

- iFGi + A(P/U,)~ GE [ 1 - a2 
(57) 

( P / u ~ ) ~  (Gi -a’)* + iAF(GE - 

(58) 

~ % [ h ( G i  - a2)4] = 

for the jet, where 

G2 = (aM - P/ao)2, GE = (aMo - P/ao)2, F = [(/3/0,,)2 - a2]*. 
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Note that, in the limit as A -+ 0, the eigenvalue equations reduce to 

(P/ao)z (GE - a2)i - [(P/ao)2 - ~ ~ 2 1 4  GE = 0 (59) 

for the shear layer and 

or 

for the jet. These are identical to the results originally given by Miles (1958). 
The principal advantage of the expansion-method solution is quite evident 

from the above equations. We observe that the presence of the finite shear 
layer appears as a perturbation to the idealized vortex-sheet eigenvalue equations. 
The added terms make the equations somewhat complex for a detailed qualitative 
study of shear-layer effects. However, the perturbed equations are ideally suited 
to an iterative numerical solution approach in which the vortex-sheet eigen- 
values may be used as initial guesses for the finite shear-layer solutions. 

4. Numerical results 
The algorithm used in solving the transcendental eigenvalue equations for 

both the series and the expansion methods involves solution of a series of equa- 
tions, each for an increasingly thicker shear layer, The eigenvalues obtained at  
each state are used as initial guesses in a Newton-Raphson iteration for the next 
thickness. This procedure is repeated until the desired thickness is attained. 
Initial values for the discontinuous profile for the examples reported here were 
taken from the work of Miles (1958) and Lessen et al. (1965). 

Because the eigenvalue equations are available in closed form, their deriva- 
tives with respect to the eigenvalue, required in the Newton-Raphson approach, 
were performed analytically and evaluated directly. Computer programs in- 
corporating these solution procedures have been written in FORTRAN IV. 
Computations were performed on an IBM 360/65, using single-precision complex 
arithmetic. 

Figure 3 illustrates the accuracy of the expansion method relative to the 
series solution for the case of a jet bounded by a linear shear layer. The ex- 
pansion method provides excellent values of the temporal growth rate for shear- 
layer thickness t o  axial wavelength ratios (ah) up to 0.25. For higher a A  values, 
the growth rate is overestimated, withthe error approaching 10-150/, a t  aA = 0.5. 

Figures 4(a )  and ( b )  illustrate the effects of a finite linear shear layer on the 
variation with wavelength of the wave speed and temporal growth rate of jet 
instabilities a t  Mach 1.0. Figures 4 (a )  and ( b )  relate to instabilities antisymmetric 
in pressure (symmetric in v) and symmetric in pressure (antisymmetric in v), 
respectively. In  addition, the results of Rlumen (1971) for a hyperbolic-secant 
jet profile a t  Mach 1.0 are superimposed on figures 4 ( a )  and (6) for comparison. 
Generally, agreement between the expansion-method and series solutions is 
quite good, with wave speeds being equal to within graphical accuracies and the 
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FIGURE 4. Jet  bounded by thin shear layer. Temporal growth rate ( / l~ /a , ) /aM,  and wave 
speed (/l,/a,)/vaM, vs. ratio of jet half-height to disturbance wavelength. (a) Unstable 
disturbance antisymmetric in pressure. ( b )  Unstable disturbance symmetric in pressure. 
M ,  = 1.0. IJ, linear, A = 0-025 h ;  A, linear, A = 04500 h;  - , series solution; - - -, 
expansion method. 

FIGURE 3. Jet bounded by linear shear la,yer. Temporal growth rate vs. shear-layer thickness. 
Disturbance wavelength = 1.0. - , series solution; - - -, expansion method. 
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FIGURE 5. Disturbance pressure distribution in linear-profile shear layer. Unstable anti- 
symmetric pressure disturbance. Wavelength = 1.0. (a)  A/h = 0.25. ( b )  A /h  = 0.50, 
Mo = 1.0. A, series solution; 0, expansion method. 

P 

0 1.0 0 1 .o 
7 = [/A 7 = t / A  

FIGURE 6. Disturbance pressure distribution in linear-profile shear layer. Unstable sym- 
metric pressure disturbances. Wavelength = 1.0. (a) A/h = 0.25. ( b )  A/h = 0.50, M,= 1.0. 
a, series solution ; 0, expansion method. 
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temporal growth rate being slightly overestimated. The expansion procedure 
accurately predicts the trends with increasing wavelength for the ranges of para- 
meters investigated. Initial guesses for the results shown in these figures were 
taken from figures 4 and 6 of Lessen et al. (1965). 

Figures 5 and 6 illustrate the pressure distributions through the shear layer, as 
predicted by the expansion and series solutions, for antisymmetric and symmetric 
pressure modes, respectively. Each figure relates to cases with unit values of 
Mach number and wavelength, and shear-layer thicknesses A/h = 0.25 and 0.50. 
The distributions have been normalized so that the coefficient A of the pressure 
in region I [equations (18) and ( 2 3 ) ]  equals 1.0 + 0.0i. Once again, correlation 
between the two methods is excellent at  A/h = 0.25, with a significant loss of 
accuracy at A/h = 0.50, although the general form of the mode shape is approxi- 
mated rather well in both cases. 

The studies reported here were primarily intended to verify the expansion 
method and to delineate the limits of its applicability. Additional investigations 
were conducted for more complicated shear-layer profiles. Speoifically considered 
were sinusoidal and square-root Mach number profiles for which the integrals 
in (45) and (46) could be evaluated in closed form. Values of the wave speeds 
and growth rates predicted for the various linear and nonlinear profiles, as well 
as additional comparisons of the type detailed above, are given elsewhere 
(Beckemeyer 1973 a) .  

5. Conclusions 
This expansion method provides a useful tool for the quantitative study 

of shear-gradient effects on jet and shear-layer instabilities. Available results 
for discontinuous vortex-sheet representations may be easily extended, using 
the expansion-method approach, to cases involving finite shear layers. The simple 
numerical techniques involved offer considerable computational savings over 
the numerical integration methods commonly employed in continuous flow 
profile stability investigations. 

Although illustrated by application to the problem of temporal instabilities 
in plane inviscid compressible flow, the method is equally applicable to the study 
of spatial and three-dimensional instabilities. Extension to these problems, as 
well as to the case with flow and temperature gradients, is currently under 
investigation (Beckemeyer 1973 b) .  For the two-dimensional examples con- 
sidered here, the method has been shown to yield accurate results for growth 
rates and wave speeds of unstable disturbances for shear-layer thickness to dis- 
turbance wavelength ratios up to 0.25, and to provide valid trend indications 
for even higher values. 

This work was carried out using the Boeing Company internal research funds. 
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